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§ ITI-GEN: ensure generated images are uniformly
distributed across single or multiple target attributes

§ How: prompt optimization using a few reference images
§ Scope: diverse attributes spanning humans & scenes
§ Train-once-for-all: transferrable tokens; no model-

specific fine-tuning needed
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§ Text-to-Image models demonstrate stereotypes

Our goal: Inclusive Text-to-Image Generation (ITI-GEN) 

§ Given a human-written prompt, the generated images 
should be uniformly distributed across attributes of interest
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Our key insight: visual attributes (e.g., blond hair, skin tone type, 
brightness) are more expressively described by images than by text

§ Single and multiple attributes§ Model re-training: impractical due to data imbalance, high compute cost
§ Text-based debiasing methods [2,3,4]

Ø Ambiguity: leads to clarity issues and model misunderstanding
Ø Specification gap: fails to capture nuances, e.g., distinct skin tones
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ü Data-efficient
ü Marginal adaptable
ü Generalizable
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§ Compatibility to ControlNet [6] and InstructPix2Pix [7]
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Please see our paper for 
results on other attributes, 
scene domains, and more 
experimental analysis
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